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Abstract

Epidemiologic studies show an increased risk of non-Hodgkin lymphoma (NHL) in patients with 

autoimmune disease (AD), due to a combination of shared environmental factors and/or genetic 

factors, or a causative cascade: chronic inflammation/antigen-stimulation in one disease leads to 

another. Here we assess shared genetic risk in genome-wide-association-studies (GWAS).

Secondary analysis of GWAS of NHL subtypes (chronic lymphocytic leukemia, diffuse large B-

cell lymphoma, follicular lymphoma, and marginal zone lymphoma) and ADs (rheumatoid 

arthritis, systemic lupus erythematosus, and multiple sclerosis). Shared genetic risk was assessed 

by (1)description of regional genetic of overlap, (2)polygenic risk score (PRS), (3)”diseasome”, 

(4)meta-analysis.

Descriptive analysis revealed few shared genetic factors between each AD and each NHL subtype. 

The PRS of ADs were not increased in NHL patients (nor vice versa). In the diseasome, NHLs 

shared more genetic etiology with ADs than solid cancers (p=0.0041). A meta-analysis (combing 

AD with NHL) implicated genes of apoptosis and telomere length.

This GWAS-based analysis four NHL subtypes and three ADs revealed few weakly-associated 

shared loci, explaining little total risk. This suggests common genetic variation, as assessed by 

GWAS in these sample sizes, may not be the primary explanation for the link between these ADs 

and NHLs.
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INTRODUCTION

It is well established that patients with autoimmune diseases (AD) such as rheumatoid 

arthritis (RA), Sjögren’s syndrome, and systemic lupus erythematosus (SLE) are at 

increased risk of malignant lymphomas, i.e. Hodgkin and non-Hodgkin lymphomas (NHL). 

Different mechanisms may plausibly contribute to this association. For instance, an 
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autoimmune reaction may involve chronic antigenic stimulation and inflammation, which 

may promote lymphoma development through heightened B- or T-cell activation 

(Baecklund, Smedby, Sutton, Askling, & Rosenquist, 2014). Increased risks of salivary 

gland marginal zone lymphomas (MZL) of B-cell origin in patients with Sjögren’s 

syndrome and of small intestinal T-cell lymphomas in patients with celiac disease support 

such mechanisms (Baecklund, Smedby, Sutton, Askling, & Rosenquist, 2014). AD treatment 

might also contribute to the observed increased lymphoma risk, for example, through 

suppression of the immune system (Baecklund, Smedby, Sutton, Askling, & Rosenquist, 

2014).

While these mechanisms are intuitively an appealing explanation for the AD-NHL 

association, the association might also theoretically involve other risk factors shared by the 

two groups of diseases. In this regard, the current understanding of environmental risk 

factors possibly shared by ADs and NHLs, such as smoking, offers no convincing 

explanation for their mutual clustering (Thun, Linet, Cerhan, Haiman, & Schottenfeld, 2017) 

(Deane, et al., 2010) (Park, et al., 2009) (Belbasis, Bellou, Evangelou, Ioannidis, & 

Tzoulaki, 2015) (Smedby & Ponzoni, 2017) (Ekström, et al., 2003) (Bernatsky, et al., 2013). 

Further, meta-analyses of genome-wide association studies (GWAS) suggested genetic 

overlap between SLE and diffuse large B-cell lymphoma (DLBCL) (Bernatsky, et al., 2017), 

and between multiple sclerosis (MS) and Hodgkin lymphoma (Khankhanian, et al., 2016) as 

a partial explanation of the accumulation of those two diseases among relatives.

Here, we use available GWAS data from three ADs, RA, SLE, and MS, and four NHL 

subtypes, DLBCL, chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and 

MZL, to explore genetic commonalities between the two disease groups.

MATERIALS AND METHODS

MS, RA, SLE, and NHL Dataset Characteristics

The MS study consists of 9,772 cases and 17,376 controls from the Wellcome Trust Case 

Control Consortium 2 (WTCCC2) project (International Multiple Sclerosis Genetics 

Consortium, 2011) (Table 1). Individuals in this dataset were of European descent and 

originated from 15 geographic regions, including the USA, Australia, New Zealand, and 

numerous European countries. Included in this dataset were summary-level association 

results for a total of 464,434 single nucleotide polymorphisms (SNPs). The genotyping 

platform was the Illumina Human 660-Quad platform; quality control was performed by the 

original authors and a log-additive genetic model was used.

The RA study consists of a combined 3,921 cases and 4,079 controls of European descent 

from a meta-analysis of two datasets: Wellcome Trust Case Control Consortium (WTCCC1) 

(Wellcome Trust Case Control Consortium, 2007) and the Epidemiological Investigation of 

Rheumatoid Arthritis (EIRA) data set (Padyukov, et al., 2011) (Table 1). The combined 

dataset (union) had summary-level association results for 650,312 SNPs. The genotyping 

platform was the Illumina 300K chip; imputation and quality control were performed by the 

original authors and a log-additive genetic model was used.
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The SLE study consists of a combined 7,219 cases and 15,991 controls of European descent 

from the Bentham et al. multi-center study (Bentham, et al., 2015) (Table 1). The study had 

summary-level association results for 623,954 SNPs. The genotyping platform was the 

Illumina HumanOmni1-Quad BeadChip; quality control was performed by the original 

authors and a log-additive genetic model was used.

The NHL study consists of cases and controls from multiple studies of four B-Cell NHL 

subtypes: DLBCL (Cerhan, et al., 2014), FL (Skibola, et al., 2014), CLL (Berndt, et al., 

2016), and MZL (Vijai, et al., 2015) (Table 1). Individuals in this dataset were also of 

European descent and originated from the USA and numerous European countries. Together, 

these datasets include summary-level association results (actual and imputed) for a total of 

9,116,853 SNPs for DLBCL, 9,116,853 SNPs for CLL, 9,078,855 SNPs for FL, and 

8,478,065 SNPs for MZL.

To generate a single working dataset containing association results for each AD and each 

subtype of NHL, the datasets were merged according to SNP name, giving a final dataset 

containing summary-level results for a total of approximately 460,000 overlapping SNPs for 

MS and each NHL subtype, 600,000 overlapping SNPs for RA and each NHL subtype, and 

600,000 SNPs for SLE and each NHL subtype. R and Plink statistical software were used 

for all subsequent analyses (Purcell, et al., 2007) (R Core Team, 2013)

SNP-level overlap between diseases

For each of the twelve cross-disease analyses, we followed a procedure used in other meta-

analyses of complex genetic diseases (Khankhanian, et al., 2016). For example, to assess 

genetic overlap between MS and DLBCL, we first identified SNPs that associated 

independently with either disease. Then, in each disease, we grouped SNPs by increasing 

significance by establishing seven association thresholds ranging from p < 5 × 10−8 to p < 5 

× 10−1. From the collection of SNPs that reached a given threshold, we selected only 

independent subsets (r2 < 0.1 in CEU), preferentially keeping SNPs with lower p-values. 

(The CEU are controls of Northern and Western European ancestry from CEPH [Centre 

d’Etude du Polymorphism Humain] collection based on 1000 Genomes and HapMap 

genotype data; r2 was downloaded using SNAP software.) Each subset of SNPs for each AD 

was tested for association with each NHL subtype. Association test statistics were adjusted 

for multiple testing using Benjamini-Hochberg’s false discovery rate (FDR) method based 

on the total number of SNPs in the subset. A FDR < 0.05 was considered statistically 

significant. The reverse process was performed to test each set of NHL SNPs and AD risk. 

SNP-level analyses were conducted for each combination of one autoimmune disease (MS, 

RA, and SLE) and one subtype of NHL (DLBCL, CLL, FL, and MZL).

Polygenic Risk Scores

Polygenic risk scores (PRS) were calculated to test the cumulative effect of SNPs associated 

with each AD on NHL and vice versa. For example, for the comparison of SLE and DLBCL, 

sets of top independent SNPs were chosen as described above. The SLE polygenic risk score 

(SLE-PRS) and the DLBCL polygenic risk score (DLBCL-PRS) were calculated for each 

individual; the PRS is defined as the weighted sum of the number of risk alleles at each SNP 
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in the set, weighted by the log odds ratio of association for each SNP (Khankhanian, et al., 

2016). We assessed the ability of the SLE-PRS to distinguish DLBCL cases from controls 

and the ability of the DLBCL-PRS to distinguish SLE cases from controls using the 

Nagelkerke R2. This analysis was repeated for each combination of one NHL subtype 

(DLBCL, FL, CLL, and MZL) and one AD (SLE, RA, and MS).

Meta-Analysis

To identify novel susceptibility loci in our merged dataset, we combined summary results 

from each AD and each NHL subtype in a meta-analysis. For each pair of diseases, for all 

overlapping SNPs, discovery-level p-values and odds ratios (OR) from the AD and NHL 

datasets (as provided by the authors of those original studies) were combined using a fixed 

effects meta-analysis as implemented in the Plink software package. The p-value threshold 

for Cochrane’s Q statistic was set to 0.05 to screen for heterogeneity in results across 

studies.

Diseasome

To visualize the similarities between ADs and the NHL subtypes, we built a human disease 

network based on disease proximities, as previously described (Khankhanian, et al., 2016) 

(Daniel Himmelstein; Pouya Khankhanian; Sergio Baranzini, 2015). Briefly, proximity was 

calculated using a random walk with restart over a heterogeneous network wherein diseases 

are connected by shared genetic etiology, as determined by databases of previously 

published data. Two diseases with greater shared genetic etiology will have greater 

proximity due to a larger number of connections. The mean proximity between NHLs and 

ADs was compared to the mean proximity between NHLs and solid cancers with the Fisher 

test. Similarly, the mean proximity between NHL and solid cancers was compared to the 

mean proximity between NHL and all other diseases (Khankhanian, et al., 2016) (Daniel 

Himmelstein; Pouya Khankhanian; Sergio Baranzini, 2015)

RESULTS

Overview

A total of 9,772 MS patients, 3,921 RA patients, 7,219 SLE patients, 3,617 DLBCL patients, 

2,492 CLL patients, 2,686 FL patients, 741 MZL patients, and 46,436 total controls were 

analyzed. Figure 1 gives an overview of study design and data analysis. For each of twelve 

pair-wise comparisons, comparing one of four NHL subtypes against one of three ADs, the 

following analyses are presented. First, we present SNPs that associated independently with 

both diseases. Next, we present polygenic risk scores to assess the cumulative genome-wide 

effect of AD-associated SNPs on NHL and of NHL-associated SNPs on AD. To identify 

susceptibility genes common to each of twelve disease pairs, a series of twelve GWAS meta-

analyses are presented. Finally, the three ADs and the four NHL subtypes from this study 

were mapped in a genetic diseasome, a network of diseases, with other ADs, NHLs, solid 

cancers, and other unrelated diseases, and relative proximity of diseases are presented.
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SNP and HLA-allele overlap between ADs and NHLs

Each of the three ADs was evaluated for SNP-level overlap with each of the four NHLs, 

resulting in twelve comparisons. The comparison of SLE versus DLBCL is detailed as an 

example (Table 2, Row 1). We identified 2,472 SNPs that associated with SLE at a 

significance threshold of p < 5 × 10−4. After discarding SNPs for which linkage 

disequilibrium (LD) information was not available, 1,718 SNPs remained representing 389 

independent regions (with r2 < 0.1 as the threshold to define independence). Of the 389 

SNPs (one SNP per independent region), two of these were significantly associated with 

DLBCL (p < 0.05 after Benjamini-Hochberg correction for 389 multiple tests). Similar 

results were found when DLBCL-associated SNPs were assessed for association with SLE 

(Table 2, Row 2). Details regarding the individual overlapping SNPs are given in 

Supplementary Table 1.

The analysis was repeated for other ADs and other NHL subtypes. In each comparison, a 

relatively small number of overlapping regions was identified, at most 14. The greatest 

amount of overlap was observed in the comparisons between MS and CLL and between MS 

and FL; SLE had a smaller number of overlapping SNPs with the NHL subtypes; and RA 

had the smallest number of overlapping SNPs with the NHL subtypes. The differences in 

amount of overlap between specific ADs were small, although it should be noted that this 

analysis was not equipped to make quantitative assertions about the significance of the 

difference in overlap (as these differences are highly dependent on other factors including 

difference in power between studies).

This analysis was repeated with the initial significance thresholds ranging from p < 5 × 10−8 

to p < 5 × 10−1; while the results in Table 2 reflect a threshold of p < 5 × 10−4 as an 

example, a similar pattern of results held at other thresholds. Details of the SNPs comprising 

this overlap are given in supplementary table 1.

Polygenic risk-overlap between diseases

To assess the extent of genetic risk overlap between AD and NHL subtypes at the genome-

wide level (including Human Leukocyte Antigen (HLA) region), polygenic risk scores 

(PRS), termed MS polygenic risk score (MS-PRS), RA polygenic risk score (RA-PRS), SLE 

polygenic risk score (SLE-PRS), DLBCL polygenic risk score (DLBCL-PRS), CLL 

polygenic risk score (CLL-PRS), FL polygenic risk score (FL-PRS), and MZL polygenic 

risk score (MZL-PRS), were calculated.

In each of the seven individual diseases, the mean PRS was higher in cases than in controls 

as expected. However, when the PRS of ADs were calculated in NHL subtypes, the score 

was not significantly different between cases and controls (Supplementary Table 2). 

Similarly, when PRS of NHL subtypes were calculated in ADs, the scores were not 

significantly different between cases and controls.

Meta-analysis

We combined each of the three ADs with each of the four NHL GWAS in a series of 12 

meta-analyses to leverage increased statistical power for discovery of novel SNPs associated 
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with both diseases. In Table 3, we report a list of SNPs which had statistically significant 

association in a meta-analysis of an AD with an NHL subtype, but which did not meet the 

discovery threshold of significance in the AD alone nor in the NHL subtype alone (though 

they may not have met the strict definition of genome-wide significance threshold as defined 

in our study, some of these hits had been carried forward by the original authors to validation 

on additional samples and subsequently been reported as significant in the original discovery 

studies). SNPs that passed the analysis paper-wide significance threshold (the “paper-wide 

threshold” includes correction for total number of tests performed in the total of 12 meta-

analyses reported in this paper) are reported in Table 3. SNPs that passed a study-wide 

significance (after correction only for the total number of SNPs in each meta-analysis) are 

shown in the supplementary table 3.

Diseasome

We reviewed 87 diseases (Table 4) for which sufficient GWAS results were available in the 

public domain. Pair-wise proximities between these diseases were calculated based on the 

degree of genome-wide genetic overlap. A graph of the proximity space reveals a cluster of 

19 autoimmune diseases, a cluster of many of the 16 available solid cancers, and a cluster of 

the four NHLs, which has closer common genetic risk overlap with autoimmune diseases 

than with solid cancers in this two-dimensional projection (Figure 2, Panel 1). The mean 

pair-wise proximity metric between NHL subtypes and autoimmune diseases was higher 

than the mean proximity between NHLs and solid cancers (0.0049 vs. 0.0023, p = 0.0041, 

Figure 2, Panel 2). The mean pair-wise proximity between NHL variants and solid cancers 

was higher than the mean proximity between NHL and all other diseases (0.0023 vs. 0.0012, 

p = 0.00066, Figure 2, Panel 2).

DISCUSSION

In an effort to understand the association between AD and NHL, we performed a series of 

analyses exploring genetic overlap between four NHL subtypes and three ADs. We found 

that only a small number of risk loci associated with NHL were also associated with AD 

risk, and, conversely, that only a small number of AD risk loci were associated with risk of 

the NHL subtypes studied. Polygenic risk score analysis, which considers a large number of 

genes and places less relative weight on the top few genes, did not demonstrate significant 

genome-wide polygenic overlap between any of the NHL subtypes and any of the AD 

examined in this study. Diseasome analysis, in contrast to polygenic risk score analysis, 

places larger relative weight on a fewer number of confirmed top genes. Diseasome analysis 

revealed that the NHL subtypes tend to occupy a common genetic risk neighborhood and 

that this common neighborhood is closer to the group of ADs than to the group of solid 

cancers. Thus, we conclude that while few risk loci overlap between any pair of the studied 

diseases, there is not enough genetic overlap found in this study to explain an important 

proportion of increased risk (less than one percent of disease risk explained based on PRS 

analysis, Supplementary Table 2).

Altogether, within the limitations inherent in the available data our findings provide little 

evidence that shared genetic risk factors are a major explanation for the increased risk of 
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malignant B-cell lymphomas in patients with autoimmune diseases such as RA and SLE 

(Baecklund, Smedby, Sutton, Askling, & Rosenquitst, 2014). As this is also the case for 

known environmental risk factors (Thun, Linet, Cerhan, Haiman, & Schottenfeld, 2017) 

(Deane, et al., 2010) (Park, et al., 2009) (Belbasis, Bellou, Evangelou, Ioannidis, & 

Tzoulaki, 2015) (Smedby & Ponzoni, 2017) (Ekström, et al., 2003) (Bernatsky, et al., 2013), 

other mechanisms, such as inflammation and chronic antigenic stimulation which increase 

B- and T-cell receptor rearrangement and B-cell somatic hypermutation, and/or AD 

treatment with immunosuppressive or biologic therapy, seem likely to be more significant 

contributors to the long-standing association between the two disease groups. The collective 

findings further suggest that monitoring and managing inflammation or other factors 

associated with the disease course as the way to reducing the risk of malignant B-cell 

lymphoma in patients with AD (Baecklund, et al., 2006)

A series of twelve meta-analyses of the three individual ADs with the four individual NHL 

subtypes demonstrated seven regions which passed a genome-wide threshold of significance 

in the twelve meta-analyses, which would not have been discovered in analysis of the 

individual diseases due to limited power (Table 3). The corresponding effect sizes were 

modest and total risk explained was low, however, the genes in these regions are discussed in 

a Supplementary Text. In brief, the list comprises genes involved in other cell proliferation 

and specifically hematopoiesis, telomerase activity, and antigen presentation (via, for 

example, MGAT5). Many of these genes have since been implicated in the ADs and NHLs 

examined in this manuscript (as larger meta-analyses of the individual ADs and NHLs have 

been published), which lends credibility to the present findings and supports the potential 

advantage of the cross-disease meta-analysis approach. Given the availability of studies of 

the individual ADs and NHLs with larger sample sizes, a repeat meta analysis would be 

possible.

There are noteworthy limitations of this study. First, this is a post-hoc secondary endpoint 

analysis; validation in an independent dataset would be required to confirm the specific 

meta-analysis findings, and a series of in vitro and in vivo studies would be required to 

elucidate mechanisms and imply causation. Some of the individual NHL subtype GWAS 

were of relatively small sample size and therefore, the statistical power in these analyses was 

limited. A lack of whole-exome coverage in a genome-wide study is another limitation; 

GWAS offer incomplete coverage and an imperfect view of the human genome compared to 

newer methods. An expansion cross-disease analysis to larger datasets with greater coverage 

would be of significant value. We completed 12 parallel meta-analyses, which further 

imposed a limitation on power; the multiple-hypothesis correction for this additional layer of 

hypothesis testing raised the threshold of genome-wide significance by one order of 

magnitude and thus limited the power of new discovery. There were many meta-analyses 

hits that reached genome-wide significance but not paper-wide significance; the vast 

majority of these were hits that have been confirmed in recent published literature, 

suggesting that perhaps future meta-analyses should focus on individual disease-pairs, thus 

avoiding the additional limitation of parallel meta-analysis. The diseasome analysis was 

limited by an inability to control for overlap in the control datasets of the individual GWAS 

used to construct the diseasome. In particular, for the diseases that were not classified as 
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NHL or AD, caution against over-interpretation of clusters of diseases with shared GWAS 

controls is warranted.

The three ADs and the four NHL subtypes presented here were selected because data were 

available and we were able to create a relationship with the respective consortia. It would be 

of value for future endeavors to study other auto-immune diseases such as Sjögren’s 

syndrome and other lymphomas such as Hodgkin’s lymphoma via a similar analysis 

pipeline, especially given the observed epidemiologic links between those other syndromes 

and the ones presented in this study.

CONCLUSION

Within the limits of this GWAS-based cross-disease analysis, we estimated that the shared 

genetic risk between the three autoimmune diseases and four non-Hodgkin lymphoma 

subtypes is limited to a handful of genes. This finding suggests that genetic etiology is not 

the primary driver in the observed epidemiologic link between AD and NHL, but rather the 

link may be driven by non-genetic factors, such as chronic antigenic stimulation and 

inflammation or immune-modulating treatment. A meta-analysis of ADs with NHLs 

suggested new candidate genes to explain the limited shared genetic risk, with roles in the 

cell cycle, apoptosis, and telomere length. Further meta-analyses of genetic variants in 

autoimmune diseases and lymphomas with larger datasets and deeper sequencing may 

provide further insight into mechanisms common to the two groups of diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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KEY MESSAGES

Within the limits of this GWAS-based cross-disease analysis, the shared genetic risk 

between SLE, RA, MS, and four common B-cell NHL types was limited to few weakly 

associated loci and explained little total disease risk.

Candidate genes with roles in the cell cycle, apoptosis, and telomere length should be 

considered in future analyses of shared genetic susceptibility to these conditions.

Further meta-analyses of genetic variants in autoimmune diseases and lymphomas with 

larger datasets and deeper sequencing may provide further insight into mechanisms 

common to the two groups of diseases.
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Figure 1. 
Study design and data analysis procedures. For each of the 12 pairs of diseases (three ADs 

and four NHLs), results from previous GWAS were used to assess genetic overlap between 

the two diseases. SNPs independently associated with both diseases were identified. Genetic 

risk scores were evaluated for genomewide overlap. Network analysis evaluated the 

proximity of these diseases in the context of other human diseases. After the evaluation of 

genetic overlap, we merged GWAS results for each AD-NHL in a meta-analysis to discover 

novel genes associated with both diseases. (AD = Autoimmune disease; NHL = Non-

Hodgkin Lymphoma).
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Figure 2: 
Panel 1. A graph of autoimmune diseases (purple), solid cancers (orange), hematologic 

cancers (white), and other diseases (gray). Thickness of lines indicates indicates greater 

levels of genetic overlap (proximity between diseases). Panel 2. The proximity between 

NHLs and ADs (blue) is greater than the proximity between NHLs and solid cancers 

(orange), which is greater than the proximity between NHLs and other diseases (green).
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Table 1.

The GWAS used for the meta-analysis.

Disease Study Unique Cases Unique Controls Original Genotyped SNPs

MS WTCCC2 (12) 9,772 17,376 465,434

RA WTCCC1 (13) and EIRA (14) 3,921 4,079 650,312

SLE Bentham study (15) 7,219 15,991 623,954

DLBCL Groupe d’Etude des Lymphomes de l’Adulte (16) 549 525 513,264

DLBCL Mayo-DLBCL (16) 393 172 516,286

DLBCL San Francisco (16) 254 749 290,454

DLBCL Omni 2,421 5,991 607,957

CLL San Francisco 213 See SF above 290,454

CLL Omni 1,953 See Omni above 607,957

CLL Utah 326 413 559,899

FL San Francisco (SF) 210 See SF above 290,454

FL San Francisco (SF2) 119 349 599,547

FL Scandinavian lymphoma etiology (SCALE) 376 791 297,989

FL Omni (22 sites) 1,981 See Omni above 607,957

MZL Omni (22 sites) 741 See Omni above 607,957
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Table 2.

Overlap of SNPs between the three autoimmune diseases and the four non-Hodgkin lymphoma subtypes. See 

supplementary table for details of each region.

Analysis

Number of SNPs that were 
significant at the threshold 
of 5e-04

Number of SNPs with 
LD info available in 
SNAP

Number of Regions 
based on LD

Number of SNPs that were 
significant after correction 
(BH < 0.05)

SLE SNPs in DLBCL 2472 1718 389 2

DLBCL SNPs in SLE 524 334 190 3

SLE SNPs in CLL 2471 1718 389 5

CLL SNPs in SLE 895 625 240 4

SLE SNPs in FL 2473 1718 389 2

FL SNPs in SLE 558 393 206 5

SLE SNPs in MZL 2462 1718 389 4

MZL SNPs in SLE 390 259 168 6

RA SNPs in DLBCL 532 423 238 0

DLBCL SNPs in RA 504 425 190 1

RA SNPs in CLL 531 423 238 1

CLL SNPs in RA 844 724 232 1

RA SNPs in FL 532 423 238 3

FL SNPs in RA 471 395 199 4

RA SNPs in MZL 530 422 237 1

MZL SNPs in RA 351 283 148 2

MS SNPs in DLBCL 1203 1031 380 6

DLBCL SNPs in MS 366 329 195 6

MS SNPs in CLL 1204 1031 380 13

CLL SNPs in MS 659 586 244 14

MS SNPs in FL 1203 1031 380 11

FL SNPs in MS 402 369 203 12

MS SNPs in MZL 1203 1031 380 0

MZL SNPs in MS 253 219 152 1

Genet Epidemiol. Author manuscript; available in PMC 2020 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Din et al. Page 29

Table 3.

SNPs which were significant in a meta-analysis of an autoimmune disease with a non-Hodgkin Lymphoma, 

but which did not meet the threshold of significance in the autoimmune disease alone nor in the non-Hodgkin 

Lymphoma alone. RA = Risk allele. RDS = Regulome DB Score. Corr=Corrected for multiple hypothesis 

testing in a single meta-analysis. Paper corr= corrected for multiple hypothesis testing in 12 meta-analyses 

presented in this paper.

Study SNP P (AD)
OR 
(AD) p (NHL)

OR 
(NHL) p (Meta)

Corr. p 
(Meta)

Paper 
corr. p 
(Meta)

OR 
(Meta) Chr

Gene(s) 
of 
interest RA RDS

CLL vs. 
MS

rs140522 3.85E-06 0.91 1.18E-05 0.86 6.49E-11 2.99E-05 4.32E-04 0.90 22 ODF3B A 4

CLL vs. 
MS

rs6793295 1.48E-05 0.91 1.10E-04 0.87 1.86E-09 8.59E-04 1.24E-02 0.90 3 LRRC34 A 7

CLL vs. 
RA

rs3731714 1.33E-03 0.89 7.82E-07 0.84 7.05E-09 4.19E-03 4.69E-02 0.87 2 CASP10, 
PPIL3, 
CFLAR

G 1d

DLBCL 
vs. MS

rs2425752 1.70E-06 0.91 1.10E-02 0.92 5.10E-09 2.35E-03 3.39E-02 0.91 20 NCOA5 A 1d

MZL 
vs. RA

rs16947122 3.56E-02 1.57 4.99E-03 0.51 5.03E-09 2.99E-03 3.35E-02 1.86 12 FBXW8, 
HRK, 
TESC

C 5

MZL 
vs. RA

rs1364229 1.73E-04 1.30 1.66E-04 0.72 1.66E-10 9.86E-05 1.10E-03 1.35 16 CDH8 A 7

MZL 
vs. RA

rs7192064 9.63E-04 0.79 3.67E-04 0.74 6.55E-09 3.89E-03 4.36E-02 0.76 16 CDH8 G

MZL 
vs. RA

rs2131402 2.50E-04 0.77 3.67E-04 0.74 1.51E-09 8.97E-04 1.01E-02 0.75 16 CDH8 G 6

CLL vs. 
SLE

rs1439112 1.80E-07 0.85 3.84E-03 1.10 7.09E-09 4.33E-03 4.72E-02 0.88 2 MGAT5 A 4

CLL vs. 
SLE

rs10936599 1.99E-05 0.87 5.01E-05 0.86 4.06E-09 2.48E-03 2.70E-02 0.87 3 MYNN, 
ACTRT3, 
TERC, 
LRRC34

C 5

CLL vs. 
SLE

rs1317082 1.50E-05 0.86 3.73E-05 0.86 2.25E-09 1.37E-03 1.50E-02 0.86 3 MYNN, 
ACTRT3, 
TERC, 
LRRC34

A 6

CLL vs. 
SLE

rs13069553 9.55E-06 0.86 4.16E-05 0.86 1.61E-09 9.83E-04 1.07E-02 0.86 3 MYNN, 
ACTRT3, 
TERC, 
LRRC34

A 5

CLL vs. 
SLE

rs7621631 1.36E-05 0.86 4.92E-05 0.86 2.69E-09 1.64E-03 1.79E-02 0.86 3 MYNN, 
ACTRT3, 
TERC, 
LRRC34

C 7

CLL vs. 
SLE

rs10069690 7.21E-04 1.12 5.56E-07 1.21 4.60E-09 2.81E-03 3.06E-02 1.16 5 TERT T 5
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Table 4.

Classification of immune and neoplastic diseases from the diseasome.

Genet Epidemiol. Author manuscript; available in PMC 2020 October 01.


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	MS, RA, SLE, and NHL Dataset Characteristics
	SNP-level overlap between diseases
	Polygenic Risk Scores
	Meta-Analysis
	Diseasome

	RESULTS
	Overview
	SNP and HLA-allele overlap between ADs and NHLs
	Polygenic risk-overlap between diseases
	Meta-analysis
	Diseasome

	DISCUSSION
	CONCLUSION
	References
	Figure 1.
	Figure 2:
	Table 1.
	Table 2.
	Table 3.
	Table 4.

